Vibrio effector protein VopQ inhibits fusion of V-ATPase-containing membranes.
نویسندگان
چکیده
Vesicle fusion governs many important biological processes, and imbalances in the regulation of membrane fusion can lead to a variety of diseases such as diabetes and neurological disorders. Here we show that the Vibrio parahaemolyticus effector protein VopQ is a potent inhibitor of membrane fusion based on an in vitro yeast vacuole fusion model. Previously, we demonstrated that VopQ binds to the V(o) domain of the conserved V-type H(+)-ATPase (V-ATPase) found on acidic compartments such as the yeast vacuole. VopQ forms a nonspecific, voltage-gated membrane channel of 18 Å resulting in neutralization of these compartments. We now present data showing that VopQ inhibits yeast vacuole fusion. Furthermore, we identified a unique mutation in VopQ that delineates its two functions, deacidification and inhibition of membrane fusion. The use of VopQ as a membrane fusion inhibitor in this manner now provides convincing evidence that vacuole fusion occurs independently of luminal acidification in vitro.
منابع مشابه
Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis.
Vibrio parahaemolyticus is a Gram-negative bacterium responsible for gastroenteritis acquired from the consumption of contaminated shellfish. This bacterium harbours two type III secretion systems, one on each chromosome. The type III secretion system on chromosome I induces cell death by a temporally controlled sequence of events that is caspase-independent and first involves induction of auto...
متن کاملA Cytotoxic Type III Secretion Effector of Vibrio parahaemolyticus Targets Vacuolar H+-ATPase Subunit c and Ruptures Host Cell Lysosomes
Vibrio parahaemolyticus is one of the human pathogenic vibrios. During the infection of mammalian cells, this pathogen exhibits cytotoxicity that is dependent on its type III secretion system (T3SS1). VepA, an effector protein secreted via the T3SS1, plays a major role in the T3SS1-dependent cytotoxicity of V. parahaemolyticus. However, the mechanism by which VepA is involved in T3SS1-dependent...
متن کاملVibrio parahaemolyticus Effector Proteins Suppress Inflammasome Activation by Interfering with Host Autophagy Signaling
Bacterial pathogens utilize pore-forming toxins or sophisticated secretion systems to establish infection in hosts. Recognition of these toxins or secretion system by nucleotide-binding oligomerization domain leucine-rich repeat proteins (NLRs) triggers the assembly of inflammasomes, the multiprotein complexes necessary for caspase-1 activation and the maturation of inflammatory cytokines such ...
متن کاملIdentification of Vibrio cholerae type III secretion system effector proteins.
AM-19226 is a pathogenic O39 serogroup Vibrio cholerae strain that lacks the typical virulence factors for colonization (toxin-coregulated pilus [TCP]) and toxin production (cholera toxin [CT]) and instead encodes a type III secretion system (T3SS). The mechanism of pathogenesis is unknown, and few effector proteins have been identified. We therefore undertook a survey of the open reading frame...
متن کاملRegulation of vacuolar H+-ATPase activity by the Cdc42 effector Ste20 in Saccharomyces cerevisiae.
In the budding yeast Saccharomyces cerevisiae, the Cdc42 effector Ste20 plays a crucial role in the regulation of filamentous growth, a response to nutrient limitation. Using the split-ubiquitin technique, we found that Ste20 forms a complex with Vma13, an important regulatory subunit of vacuolar H(+)-ATPase (V-ATPase). This protein-protein interaction was confirmed by a pulldown assay and coim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 1 شماره
صفحات -
تاریخ انتشار 2015